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Extended Materials and Methods 
 
Literature Searches and Data Collection 
 
We searched the Web of Science (search data: 25 November 2019) for studies containing 
‘"local adaptation" AND reciprocal AND transplant*’ in the title, abstract or keywords to find 
reciprocal transplant experiments. In addition, we selected primary studies collated by previous 
meta-analyses investigating local adaptation: Leimu & Fischer (2008), Hereford (2009), 
Boshier et al. (2015), Palacio-López et al. (2015) and Halbritter et al. (2018). We also searched 
in Dryad Digital Repository (http://datadryad.org) for studies which deposited their data on this 
platform by using the search term “reciprocal transplant*” (search date: 11 March 2019).  
 
To be included in our meta-analysis, the primary study had to: 1) conduct a reciprocal transplant 
experiment between two or more environments; 2) show that there was local adaptation in at 
least one of the environments (or refer to another study that did show this), and 3) measure two 
or more phenotypic traits, other than the trait(s) which were used to establish local adaptation. 
Based on title and abstract relevant studies were selected (for the search in Web of Science by 
RR and TU, for the other sources by RR). The studies were more closely screened and relevant 
data was extracted (by RR and DWAN). In instances where only part of the data was available 
we checked if raw data was deposited in repositories, or contacted authors directly for the 
relevant information. For details, see the full PRISMA diagram (Fig. S1.1). All raw data, code 
and analyses can be found at Open Science Framework repository at https://osf.io/se53c/. 
 
Moderator (Predictor) Variables 
We collected a number of moderator variables which we a priori expected to explain variation 
in effect sizes. These were the number of phenotypic traits quantified, the proportion of those 
traits being phenology traits (a range from 0 for only morphological traits to 1 for only 
phenology traits) and a measure of the extent of local adaptation. To calculate a measure for 
local adaptation we first identified the order of phylogenetic age for all populations. This order 
was based on reports in the primary studies or other publications, or global patterns of 
colonization such as south to north gradients on the Northern Hemisphere, lower to higher 
altitudes, centre to edge of geographical distributions or benign versus more hostile 
environments, or historical records of invasion or colonisation. Next we calculated, for all 
fitness traits, Hedges’ g between the youngest population in the youngest environment (BinB) 
and the oldest population in the youngest environment (AinB). For fitness traits that were 
expressed as percentages we first calculated the odds ratios and transformed those to Hedges’ 
g. A positive Hedges’ g means the new population is locally adapted, while a negative value 
means that the old population is better adapted in the new environment than the young 
population.  
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Figure S1.1: PRISMA diagram for the systematic search  

 
Effect Size Calculations 
To ensure that a few traits were not disproportionately impacting effect sizes, we centered and 
standardized, means, and P-matrices in such a way that the means and standard deviations for 
population A in environment A were zero and one, respectively.  We centered and standardized 
means, as:  

 

𝒙"! ≡
𝒙" − 𝒙""#$"
𝝈"#$"

 

 
in which 𝒙""#$" are the means for the population A in environment A and 𝝈"#$" their 

standard deviations. We standardized P-matrices, as: 
 

𝑷! ≡ 𝑷⊘ (𝝈"#$" ∙ 𝝈"#$"′) 
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⊘ denotes an element-wise division. Below we describe in detail how we calculated different 
effect sizes using the standardized means and covariance matrices, but to simplify notation, we 
drop the subscript 𝜇 in the remainder of the text. 
 
We first constructed vectors between the simulated trait means. We calculated phenotypic 
plasticity of population A (𝒑") as the difference between the phenotypic trait means of 
population A in environment B and environment A: 
 

𝒑" = 𝒙""#$% − 𝒙""#$" 
 
Similarly, phenotypic plasticity of population B (𝒑%) is the difference between the phenotypic 
trait means of population B in environment A and environment B and defined as: 
 

𝒑% = 𝒙"%#$" − 𝒙"%#$% 
 
The evolutionary divergence of population B (𝒆%) is the difference between the phenotypic 
trait means of population A and population B in environment B and defined as: 
 

𝒆% = 𝒙""#$% − 𝒙"%#$% 
 
The total divergence of population B (𝒕%) is the difference in between the phenotypic trait 
means of population B in environment B and population A in environment A and defined as: 
 

𝒕% = 𝒙"%#$% − 𝒙""#$" 
 
From these vectors we calculated effect sizes. To investigate whether phenotypic plasticity was 
reversible between populations A and B, we calculated the difference in length of plasticity 
vector B and A relative to the length of plasticity vector A (|𝑝𝑝|): 
 

|𝑝𝑝| =
|𝒑%| − |𝒑"|

|𝒑"|
 

 
We also calculated the angle between plasticity of population A and population B (∠𝑝𝑝) 
indicating their alignment and defined as: 
 

∠𝑝𝑝 = 𝑎𝑐𝑜𝑠 8
𝒑" ∙ 𝒑%

9𝒑" ∙ 𝒑"9𝒑% ∙ 𝒑%
:
180
𝜋  

 
 
To test for the alignment between plasticity and the phenotypic difference between populations 
we calculated the angle between plasticity of population A and total divergence (∠𝑝𝑡) and 
defined as: 
 

∠𝑝𝑡 = 𝑎𝑐𝑜𝑠 @
𝒕% ∙ 𝒆%

√𝒕% ∙ 𝒕%√𝒆% ∙ 𝒆%
B
180
𝜋  

 
We calculated the projection of phenotypic plasticity on the total divergence relative to total 
divergence (𝑝: 𝑡) as a measure of how much phenotypic plasticity contributed to local 
adaptation, which is defined as: 
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𝑝: 𝑡 =
𝒑" ⋅ 𝒕%
𝒕% ⋅ 𝒕%

 

 
From this we classified studies as being undershot (0 < 𝑝: 𝑡 < 1), overshot (𝑝: 𝑡 ≥ 1) or in the 
opposing direction (𝑝: 𝑡 ≤ 0). We used the angle between plasticity of population A and 
evolutionary divergence B (∠𝑝𝑒) indicating their alignment and defined as: 
 

∠𝑝𝑒 = 𝑎𝑐𝑜𝑠 8
𝒑" ∙ 𝒆%

9𝒑" ∙ 𝒑"√𝒆% ∙ 𝒆%
:
180
𝜋  

 
To investigate whether evolutionary divergence proceeds in the direction of most phenotypic 
variance we calculated the angle between the first eigenvector of the P matrix for AinA (𝝀&'() 
and evolutionary divergence B (∠𝜆𝑒) indicating their alignment and defined as: 
 

∠𝜆𝑒 = 𝑎𝑐𝑜𝑠 8
𝝀&'( ∙ 𝒆%

9𝝀&'( ∙ 𝝀&'(√𝒆% ∙ 𝒆%
:
180
𝜋  

 
Since 𝝀&'( is nondirectional, we subtracted ∠𝜆𝑒 from 180 when it was larger than 90º. To test 
whether evolutionary divergence aligned better with most phenotypic variance rather than with 
phenotypic plasticity we calculated the difference between ∠𝑝𝑒 and ∠𝜆𝑒 (Δ𝑝𝑒𝜆𝑒): 
 

∆𝑝𝑒𝜆𝑒 = N ∠𝑝𝑒 − ∠𝜆𝑒, 𝑖𝑓	∠𝑝𝑒 ≤ 90°
180 − ∠𝑝𝑒 − ∠𝜆𝑒, 𝑖𝑓	∠𝑝𝑒 > 90° 

 
To investigate whether plasticity proceeds in the direction of most phenotypic variance we 
calculated the angle between the first eigenvector of the P matrix of AinA and phenotypic 
plasticity A (∠𝜆𝑝): 
 

∠𝜆𝑝 = 𝑎𝑐𝑜𝑠 V
𝝀&'( ∙ 𝒑"

9𝝀&'( ∙ 𝝀&'(9𝒑" ∙ 𝒑"
W
180
𝜋  

 
Since 𝝀&'( is nondirectional, we subtracted ∠𝜆𝑝  from 180 when it was larger than 90º.  
 
 
Sampling Variance for Effect Sizes 
We took a flexible meta-analytic approach to effect size and sampling variance estimation that 
allowed us to make use of traditional multi-level meta-analytic models, which more effectively 
weight studies based on their precision. Given that no effect size captures all aspects, we used 
a series of alternative effect size measures and generated their corresponding sampling 
variances. For only part of the primary studies we had P-matrices available, therefore we built 
two sets of effect sizes; one for all effect sizes which were based on mean trait values and one 
for all effect sizes which were also based on P-matrices. The second dataset is based on a subset 
of all primary studies in the first dataset. For both sets we simulated observations to estimate 
the sampling variance. Prior to the simulations, any non-positive-definite P-matrices (i.e., non-
positive eigenvalues) were ‘bent’ to make them positive definite (Wood & Brodie 2015). For 
both sets we excluded any phenotypic trait which did not describe a morphological or timing 
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related characteristic and where variances were zero or negative and which had a sample size 
smaller than 10.  

To generate sampling variance we used Monte Carlo simulations to generate 5000 
simulated datasets. For each trait in each experimental population we sampled individuals that 
matched the study sample size from a normal distribution with the observed mean and standard 
deviation of the population. For the subset of studies with P-matrices we repeated these 
simulations, but sampled for all traits simultaneously from a multivariate normal distribution 
with trait means as means and the P-matrices as the variance-covariance matrix. We drew as 
often as the largest sample size for each experimental population and randomly removed draws 
for individual traits when their sample sizes were smaller to simulate missing values. For all 
these simulated datasets we calculated effect sizes (see below), leading to distributions rather 
than point estimates. Effect sizes generated in this way have the benefit of propagating 
sampling variance from different study designs across different environments. 

The ancestral history for some studies was ambiguous. We therefore tested whether the 
uncertainty in the ancestral order of these populations would affect the main findings. We 
selected studies for which we deemed the ancestry ambiguous; these were studies with an 
ancestral order (from ancestral to derived) based on south to north on the northern hemisphere, 
inland to coast, lower to higher altitude and few other reasons. We performed 1000 
randomizations in which, we randomly picked for each comparison one of the populations as 
ancestral and the other as derived. We reran the analyses for the angle between plasticity and 
evolutionary divergence, plasticity and total divergence and the first eigenvector for the 
ancestral population in the derived environment (A in B) and evolutionary divergence. All 
findings were robust to the uncertainty of ancestral order since the point estimates produced by 
the randomized analyses fell within the confidence intervals of the main analyses (§8 and figure 
11 in Appendix S2). 
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Table S1.1: AICc values for the selection of random structure. 
 

 Error + study Error + species Error + study 
+ species 

Change in variation between AinA and AinB 
184.13 184.13 184.76 

Change in variation between AinA and BinB 
184.04 197.47 198.24 

Angle two plasticity A and plasticity B 
251.31 251.31 253.54 

Length difference in plasticity BtoA and AtoB 
151.75 151.93 153.97 

Angle plasticity of A and Pmax for AinA 
182.88 183.43 183.43 

Angle plasticity of A and total divergence of B 
256.66 263.33 258.89 

Proportion of total divergence due to plasticity 
129.41 143.07 131.64 

Angle between plasticity of A and evolutionary 
divergence of B 

271.13 271.13 273.36 

Angle evolutionary divergence of B and Pmax for AinB 
188.57 188.57 191.37 

  
 


